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Recent years have witnessed the very rapid increase in both the
volume and sophistication of malware programs. Malware authors
invest heavily in technologies and capabilities to streamline the
process of building and mutating existing malware programs to
evade traditional protection. One major challenge currently faced
by the antivirus industry is to efficiently process the vast amount of
incoming suspicious samples. Since most new malware is a
variation of an existing malware family with the same forms of
malicious behavior, automatic clustering and classification of
malware programs into families have become valuable tools for
malware analysts. Such grouping criteria not only allow analysts
to prioritize the allocation of their investigation efforts but may
also be applied to detect new malware samples based on their
association with existing families. In this paper, we address the
multi-class malware classification challenge from a scalability
perspective. We present the design, development, and evaluation
of a novel machine learning classifier trained on multifaceted
content features (e.g., instruction sequences, strings, section
information, and other malware features) as well as threat
intelligence gathered from external sources (e.g., antivirus
output). Our experiments on a dataset of 21,741 malware samples
demonstrate the efficacy and precision of the proposed algorithm
and also provide insights into the utility of various features.

Introduction

It is not news that malware is a huge and rapidly growing
problem for enterprises, home users, and educational
institutions, as well as health care providers, nation states,
and government agencies. With the tools and services
available to malware writers such as automatic malware
generator and obfuscation services, traditional defense
technologies can be easily defeated by rapid and on-the-fly
generation of obfuscated, polymorphic, and metamorphic
versions of malware [1]. One of the steps in dealing with the
huge number of malware samples is to be able to classify
binary executables into different malware groups, called
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families. This will help track various generations and
advancement of a malware family as well as automatically
detecting and classifying new binaries [2—6]. Machine
learning has long been used in researching ways to
automatically detect and classify binaries [7, 8]. Various
approaches have been suggested; the success of the
approach revolves around the choice of the features

(i.e., inherent attributes of malware samples), speed of the
feature extraction, algorithms that classify the binaries
into families, and the quality of the training dataset.

In this paper, we present our approach to solving the
Microsoft Malware Classification Challenge on the
Kaggle Platform [9]. We were given two datasets: a
training set and a test set with 10,868 and 10,873 malware
samples, respectively. For each malware sample, two types

©Copyright 2016 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed
royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/16 © 2016 IBM

IBM J. RES. & DEV. VOL. 60 NO. 4 PAPER 6 JULY/AUGUST 2016

X.HUETAL. 6:1

Authorized licensed use limited to: IBM. Downloaded on November 20,2020 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.



of files are provided: hexadecimal byte content and
Assembly Language Source (ASM) files produced by
IDA Pro, a commercial disassembler software. We
address the multi-class malware classification challenge
from a scalability perspective. We present the design,
development, and comparison between various machine
learning classifiers trained on a combination of content
features (e.g., instruction sequences, strings, section
information) and threat intelligence gathered from
external sources (e.g., antivirus output). We also propose
several optimization methods to further improve the
classification accuracy. Our experiments on the real-world
malware datasets demonstrate the efficacy and precision of
the proposed algorithm in processing large malware
datasets and also provide insights into the utility of
various features.

Related work

There are many previous works on malware classification
and detection [3, 5, 8, 10, 11], including works on
theoretical limits of malware detection [12, 13].

LeDoux and Lakhotia [14] describe machine learning
techniques used for malware classification, where malware
features are extracted from static and dynamic malware
analysis. Most of the static approaches use N-gram-based
feature extraction [4, 5, 15—-18]. The N-grams are
extracted from the machine bytecode, disassembled
instructions, or instruction mnemonics. Jacob et al. [4]
studied the preserved statistical similarity over packed
binaries, and proposed a packer-agnostic bigram-based
malware classification measure. N-grams can be
suboptimal in finding similarity among permuted codes.
To deal with this, Karim et al. [2] proposed a variation

of N-gram called the “n-perm” method, which is similar to
the N-gram method. However, the order of the characters
is irrelevant. The N-gram approach usually produces
high-dimensional features, making the problem intractable
because of the amount of resources required. Jang et al. [5]
proposed a feature hashing technique to reduce the
high-dimensional feature space and evaluated it on
N-gram-based features. Another approach to malware
classification involves converting malware binaries into
images and using signal processing techniques to

extract features [19, 20]. Some previous works only used
the attributes available in the Portable Executable (PE)
file header [7, 21, 22]. When unpacked code is available
with accurate disassembly, more robust features can be
extracted from the semantics of the code [3, 5, 10, 23].
Code semantics-based features are robust because they can
find similarity among polymorphic codes. Hu et al. [3]
studied call-graphs-based features that are less susceptible
to instruction-level obfuscations and proposed a scalable
nearest-neighbor search technique for a large graph
database of malware. Kruegel et al. [10] proposed a
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technique to extract the control-flow graph from network
streams, convert it into canonical form, and perform
similarity computations to detect polymorphic worms.
Several machine learning approaches such as association
rule, support vector machine, decision tree, random forest,
naive Bayes, and clustering techniques have been studied
to build malware classifiers based on the features discuss
above. Schultz et al. [7] first introduced data mining
methods for detecting malware by using naive Bayes
algorithms on strings and N-gram-based features.
Gandotra et al. [8] has covered many of the interesting
machine learning approaches. The work most closely
related to ours in terms of machine learning approach is
by Siddiqui et al. [11], which uses the random forest
algorithm, along with bagging and decision tree classifiers.

Dataset overview

We investigate our methods with the malware dataset
from the Microsoft Malware Classification Challenge on
the Kaggle platform [9]. The dataset consists of nine
different malware families: Ramnit, Lollipop, Kelihos ver3,
Vundo, Simda, Tracur, Kelihos verl, Obfuscator.ACY,
and Gatak. Each malware sample provides raw binary
content in a so-called hex dump of each sample excluding
Portable Executable (PE) headers, and disassembled
instructions and functions generated by the IDA Pro
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disassembler. There are 10,868 malware samples for
training and 10,873 malware samples for testing. Figure 1
depicts the distribution of malware samples in each family.
The distribution is non-uniform, with Kelihos having the
most number of samples and Simda having the fewest.

In addition, while inspecting the malware dataset, we
notice that IDA outputs of some samples give little or no
information. Manual investigation discloses that such
samples are broken files or abnormal executable files,
e.g., encrypted/compressed files, which creates additional
challenges for our classification algorithm.

System architecture

Figure 2 summarizes the architecture of our system. At a
high level, the malware analysis pipeline consists of four
main components. First, it preprocesses the malware
dataset to reconstruct the original PE files and obtains the
labeling information from various AV (antivirus) software.
Then, it extracts two types of features, i.e., machine code
instruction features and AV label features, and performs
necessary feature transformation. Next, these two types of
features are aggregated into a single feature vector,

which is used to train the classification model and finally
determine the malware families in the test dataset.

Preprocessing

For PE files, we first reconstruct executable PE files,

by converting hex dumps into raw binary, and by
reconstructing PE headers based on the information from
the IDA Pro outputs. This allows us to plug in a variety of
analysis methods to comprehensively extract a rich set of
features, including static and dynamic-analysis features
and AV labels. Based on the PE file format [24], we
extract necessary information from IDA outputs, such as
virtual/raw sizes, addresses, flags of sections, and entry
points. Since IDA outputs do not provide complete
information to recover the original PE headers, we apply
default values to some fields (e.g., TimeDateStamp),
employ heuristics to extract information (e.g., the location
of public start, WinMain, D11Main addresses for
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entry points), and arrange sections by handling “collapsed”
parts where information was hidden in IDA Pro’s outputs.
For non-executable samples, we reconstruct the original
file by converting hex dumps into raw binary and by
identifying the original file format and prepending
truncated “headers” (available either in the hex dump or
the IDA output). After reconstructing the original file,
appropriate preprocessing for each file type is further
required to obtain meaningful features. For example,
(1) CryptFF (i.e., every byte XORed with OxFF) files are
decrypted by XOR-ing with OxFF to recover the original
file, (2) LHA/RAR/7zip compressed files are decompressed,
(3) UPX-packed files are unpacked, (4) base64-encoded files
are decoded, (5) malformed file signatures are
fixed (e.g., the DOS header signature changed from “Mz”,
which are the initials of Mark Zbikowski, an MS-DOS
developer, to “mz”—or the PE signature changed from “PE”
to “pe”), and (6) executable file attachments are extracted
from Microsoft Outlook** message files.
We then utilize IDA Pro to obtain disassembly instructions
of the recovered/extracted executable files.

Feature extraction

AV label features

We use VirusTotal to obtain AV labels for reconstructed
PE files. VirusTotal provides scanning results of over

40 different antivirus products. Antivirus scanners
typically detect malware using signatures that would be
built based on analysis of specific malware. Therefore,

if two samples are detected by the same signature of the
same AV scanner, both samples likely belong to the same
malware family. However, there are some challenges
with leveraging such intelligence. First, AV labels are not
necessarily consistent across different AV scanners—even
within the same AV scanner, e.g., different labeling
conventions (troj vs. Trojan) and different variant
names (troj.aa vs. troj.1l). One way to address the
issue is to tokenize AV labels based on punctuations (e.g.,
., = _), and normalize tokens to derive consistent malware
family labels. Second, we may not be able to achieve
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_wmain  proc near
68 E4 20 40 00 push

FF 15 9C120 40 060 call ds:printf
83 C4 04 add esp, 4

33 Co oK eax, eax
C3 retn

_wmain  endp

Encoding a function into a feature vector.

complete detection coverage. Although AV scanners are
capable of handling some packed binaries, they may still
miss some samples due to sophisticated obfuscation. In
addition, since there could be errors in the process of
reconstructing PE files, given limited available information
from the IDA output, especially identifying entry points,
AV scanners may fail to detect malicious code. Because of
these limitations, the AV labels cannot be directly used to
classify malware (at least unable to achieve the desired
level of accuracy). Instead, in our experiments, we utilize
AV label features as a supplement to other features,

such as instruction features.

Instruction N-gram features

We use IDA Pro to disassemble the reconstructed malware
binaries into a sequence of machine instructions, from
which the features are extracted. One of the key
components in the proposed algorithm is the similarity
comparison between malware samples based on the
disassembled instruction sequences, e.g., move eax, ebx;
cmp eax, lh. The main challenge in similarity comparison
lies in handling the variations of machine instructions.
Malware often undergoes changes for many reasons, such
as mutation, polymorphism, and obfuscation where
semantically equivalent instruction sequences are used

to replace each other. As a consequence, ensuring
exactness in comparing instructions does not tolerate any
variation in the code syntax. At the other extreme,
correctness is compromised if all forms of variation are
tolerated. We strike a balance between these two extremes
by using opcode sequences (move, cmp, etc.) as a
succinct representation of the instruction semantics.

Using opcodes offers several unique benefits. Opcodes
generalize well to represent variants within a malware
family, because malware in the same family are often
derived from the same code base, and thus share
similarities in their machine instructions. However, due
to relinking, rebinding, and rebasing, the operands
(e.g., registers, memory addresses) of instructions tend
to differ across variants. Using opcodes and ignoring the
operands (i) makes the algorithm more resilient to

6:4 X HUETAL.

offset| Format

~ X

# wmain 0x401000-0x401011
push | call | add|| xor | ret |

0,1..,1..,20

<0, 0 10,..,01.,

low-level mutations while providing a meaningful
characterization of malware semantics and (ii) reflects
the functionality of malware programs in terms of the
operations performed by their machine instructions.
However, we also would like to point out that the
N-gram opcode sequence analysis may still be
circumvented by advanced obfuscating transformation
such as VM (virtual machine)-based packing.

With this encoding scheme, a program is represented
as a sequence of opcodes, e.g., move, push, pop, jmp,
call, etc. Then, the challenge becomes how to convert the
variable length instruction sequences into fixed length
feature vectors suitable for model learning (see Figure 3).
To better characterize the contents of malware programs,
we use N-gram analysis, which moves a fixed-length
window over an instruction sequence and considers a
subsequence of length N at each position. The resulting
N-gram of opcodes reflects short instruction patterns and
implicitly captures the underlying program semantics.
Next, for each malware program, a feature vector V is
constructed in an |S|-dimensional space (|S] = |O]" where
O is the set of all possible opcodes). Each dimension of
V' is the number of occurrences of a particular opcode
N-gram. In this way, the similarity between two malware
programs (m,v) can be geometrically calculated as the
Euclidean distance between their feature vectors in the
vector space:

d(m,n) = [V = Vall =

Compared to the other similarity metrics (e.g., locality-based
hashing), geometric calculation of similarity in the vector
space provides explicit feature representation [25],

where the importance or contribution of each N-gram in
classifying malware can be traced back to its original code
patterns. For N-grams that may correspond to inherent
characteristics of a malware family (e.g., those that appear
frequently within a family but rarely in others), their
original code segments can be traced back and used as
signatures to detect malware variants.
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The N-gram analysis provides a useful feature
representation for machine learning classifiers. However,
one inherent problem of the resulting feature vectors is
that they are very high dimensional, making storage
and comparison of these feature vectors quite costly and
computationally expensive. In this work, we address this
“curse of dimensionality” with the hashing kernel
technique. Kernel methods [26] are powerful tools used
in machine learning to allow operation in the
high-dimensional feature space without having to compute
the coordinates of the data in that space. This is
particularly useful when the input data has a non-linear
decision boundary but can be linearly separated in a
high dimensional feature space. In general, given input
data x;,...,x, € X for some input domain X, the
kernel methods compare two input data as:

k(i x) = (B(xi), B(x))

where ¢ is the mapping function from X" to some feature
space. In analyzing malware programs, however, we

have encountered the opposite problem: the original space
is very high-dimensional, implying that the input data are
likely already linearly separable, and hence there is no
need to map the input vectors to a higher-dimensional
feature space. Since the number of dimensions D
determines the complexity when computing the vector
distance and D increases exponentially with N in the
N-gram (i.e., D = |O|", where |O] is the number of
different opcodes and in practice |O] > 200), even a small
N like 3 will result in a (very sparse) feature vector with
more than 8 million dimensions, which is computationally
prohibitive when calculating similarities for a large
amount of malware samples. Unfortunately, N must be

at least 3 or 4 to be sufficiently descriptive for capturing
the program semantics. To address these kinds of
problems, the hashing-kernel has recently been developed
in the machine learning community [27]. Instead of
working on the original feature space, the technique
hashes the high dimensional input vector x € R, into a
lower dimensional feature space R,, with the mapping
function ¢ : X — R,,. Since m < n, the hashing trick
reduces a feature vector to a more compact representation,
allowing the classification algorithm to handle a large
volume of data and save both computation and memory
requirements. Previous research has shown that the hash
kernel approximately preserves the inner product between
vectors and the penalty incurred from using a hash for
reducing dimensionality only grows logarithmically with
the number of samples and groups [27].

To use the hashing kernel, instead of assigning each
N-gram a unique index, we apply a uniform hash function
H : {N — gram} — [l ...m] that hashes N-gram directly
into a position in the feature vector of length m. In case of
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a collision where two or more N-grams map to the same
position, the sum of the frequencies of all the colliding
N-grams is used as the value in the new vector. More
formally, for malware M and M°, let v and +° represent
their original feature vector extracted from the encoded
opcode sequences and & denote the mapping from the
N-gram (01, 02,...,0y) € S to the index in v. We
define the hash feature map ¢ as

G =Y o)

1:H(0)=i,l€S
and the distance between M and M° as
dy(M, M) = |lv =V, = [lo(v), 6(v)]|-

The choice of m, the length of the low dimensional
vector, is a trade-off between classification accuracy and
storage overhead plus computational complexity.
Choosing a smaller m results in a shorter vector length,
and, thus, faster distance computation and smaller
memory footprint to store malware features. However,
decreasing m reduces the number of bins in which the
hash function can place the different N-grams and
consequently increases the collision possibility,

leading to over-compression of features and negative
impact of the classification accuracy. From our experience,
a practical trade-off can be achieved with m = 2! to 24,
and a larger m usually provides only marginal
improvements of the classification accuracy while
incurring exponentially increasing overhead in terms

of storage and computation. In this work, we choose

m = 23 as our default setting which results in an
8,192-dimensional feature vector.

String/PE header features

We also tested some simple features as well. In particular,
we ran the strings utility on the hex and ASM files for all
training set samples in a family. This gave us a set of
strings per family. We then looked for a subset of strings
from all the strings for a family that are unique to that
family. We then computed how popular those strings are
within the family in terms of the percentage of training
samples that have those strings. Unfortunately, these
numbers did not show any prominent strings, and we
determined that they are not well suited for malware
classification, likely due to obfuscation and the heavily
polymorphic nature of malware samples.

Learning algorithms

In the previous sections, we have described techniques
for extracting different features from malware programs.
In this section, we will investigate several
machine-learning-based classification algorithms with
real-world malware samples to understand the
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effectiveness of different algorithms in handling the
diverse sets of malware families.

Performance metrics

Before discussing the concrete classification algorithms,
we first introduce the metrics used in the Kaggle
competition to evaluate the performance of various
classification algorithms. This will help us gain insights
into the underlying factors that drive the performance of
different algorithms.

As described earlier, the dataset provided in the Kaggle
competition consists of 9 distinct malware families.
According to the rules, the submission (result file) should
contain 10 columns: the first column is the sample ID
(uniquely identifying each malware sample) and the
remaining 9 columns contain the predicted probability
(between 0 and 1) of the sample belonging to each of
9 malware families. Assuming there are N malware
samples each belonging to one single malware family,
the performance of a particular prediction result from a
classification algorithm is evaluated using multi-class
logarithmic loss:

1L
logloss = fNZZy,-j log(p;;)
=1 =1

where y;; is 1 if the sample i is indeed in malware family
j and 0 otherwise; and p;; is the predicted probability of
sample 7 belonging to family ;. In order to avoid the
extremes of the log function, predicted probabilities are
replaced with

max(min(p, 1-1075), 10715)4

Two observations can be made from the above definition.
First, the range of logloss value is between 0 and 34.5,
and the better the classification algorithm is, the closer its
log loss value is to 0. However, due to the replacement of
the extreme values, a logloss score of 0 is unachievable.
Even if the classification algorithm makes the perfect
prediction i.e., assigning probability 1 to the correct
malware family, p;; will be assigned the value 1-10°13,
which incurs a non-zero logloss, albeit a very tiny one
(i.e., —9.9920 x 107'). On the other hand, when the
algorithm makes a completely wrong prediction, i.e.,
assigning probability O to the correct malware family,

pi; will be replaced with 107"%, leading to a logloss value
of —log(107!3) = 34.5388. Another important observation
is that a completely wrong prediction would have a
detrimental effect on the final logloss score. For instance,
assigning probability O to the correct malware family will
contribute a 34.53 logloss to the total metric. In contrast, a
probability of 0.0001 will only create an addition of
—log(0.0001) = 6.91 logloss in case of the wrong
prediction and a —10g(0.9999) = 0.0001 increase in case
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of the correct prediction. In other words, the probability
assignment can be optimized as a function of the
classification confidence, and unless absolutely certain,
the assignment of probability 0 should be avoided. Having
introduced the performance metric, in the rest of this
section, we will describe several machine-learning-based
classification algorithms that we have investigated in

this study.

Weighted nearest neighbor classifier

One of the simpler classification algorithms is the
k-nearest neighbor (KNN) classifier. KNN is a member
of non-parametric methods that determines the
classification results based on the closest examples in the
feature space. The standard KNN classifiers output a
single class membership, where an unknown sample is
classified by a majority vote of its neighbors, with the
object being assigned to the class most common among
its k nearest neighbors. However, in the malware
classification case, a multi-class classification algorithm is
expected. For this, we developed a weighted multi-class
classification adaptation of the standard KNN algorithm.
More specifically, for each sample i in the test data,
assume it has n matched training samples denoted as
r1,72,. .., ry. Let Sj(re) be the similarity score of sample
k matched to malware family j € 1...9. Then p;, the
probability of sample i belonging to family j, is
computed as:

2 Sl
pij = n 9
D ket Dmet Sm(7%)

One of the main shortcomings of the KNN classifier is

its sensitivity to the local structure of the data, and
therefore, it does not perform well in the high-dimensional
feature space where the sample distribution may be
dispersed. In our experiments, the weighted KNN classifier
achieves a 1.30 logloss value.

Logistic regression

We also tested a linear-model-based classification
algorithm, i.e., logistic regression. Logistic regression is a
special type of regression model that “tries” to predict a
discrete variable (y = 0 or 1) with a set of known features
x, by fitting a logistic function. More specifically, it
learns a probability function of y given x in the form:

P(y = 1|x) =hy(x) = ﬁ =o(0"x)

P(y=0J|x) =1 — hy(x)

where hg(z) = 1/(1 + e7%) is the sigmoid or logistic
function, which maps the linear combination of feature
value 6"x into the range of [0,1], which can be interpreted
as the probability. Given a set of training examples,
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logistic regression minimizes the following cost function to
find the best coefficient 6:

J(0)=-% (y(” log <h0 (=) +(1 _y(i>>l°g(l _h”(x(i)))>>

In this study, we evaluated the logistic regression
algorithm using 5-fold cross validation on the entire
training datasets. The training model took 2,190 seconds,
and prediction took 0.06 seconds. Our experiment showed
that the logistic regression model correctly predicted
98.2% of samples, resulting in a logloss value of 0.231.

Support vector machine

We further evaluated a non-linear learning algorithm called
the support vector machine. The support vector machine
(SVM) is a discriminative classifier model, which learns a
hyperplane from the set of training data that best separates
between positive and negative samples. SVMs address

the problems of overfitting and capacity control associated
with the classical learning machines and therefore tend to
perform better in many scenarios. For a given learning task
with a finite training set, an SVM strikes a balance between
the accuracy obtained on the given training set and the
generalization of the algorithm, which measures its ability
to learn future unknown data without error. The flexible
generalization ability of SVMs makes them suitable for
real-world applications. More importantly, SVMs can
efficiently learn non-linear separation boundaries by using
a kernel function that implicitly maps the inputs sample
data into high-dimensional feature spaces. We evaluated
the SVM with Gaussian kernel (also known as RBF,

or radial basis function, kernel) using the same 5-fold
cross validation of training datasets. The training took
7,984 seconds, and the resulting classifier achieves

79.72% accuracy with a logloss value of 0.55812.

The worse performance of the SVM comparing with simple
linear logistic regression model could potentially be
attributed to the sparsity of malware feature vectors.

Random Forest

Finally, we experimented on one type of ensemble
learning methods called the Random Forest. The main idea
of ensemble learning is to combine a set of “weak
learners” to form a “strong learner.” In case of random
forests, the weak learners correspond to a set of decision
trees constructed by using a random subset of the training
data. At each candidate split in the learning process, the
algorithm also selects a random subset of features to train
the decision tree. More specifically, the tree growing
process works as follows:

1. Given a set of N training samples, at each round, a
subset of n samples is chosen at random with
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replacement from the training set. These samples will be
the training set for growing the particular decision tree.
2. If there are M input variables (features), m variables are
selected at random at each node, and the best split on
these m variables is used to split the decision tree node.
3. Each tree is grown to the largest extent without pruning.

The above process repeats for every sub-tree in the forest
until the number of trees reaches the predefined number &
set by the user. Generally, a larger & leads to better accuracy
in classification, but it also incurs higher computational
cost. After training, predictions for new samples can be
made by taking the votes from individual decision trees, and
the forest chooses the class that has the most votes received
from all trees in the forest. This ensemble approach often
leads to better model performance, because it decreases
the variance of the model (due to averaging) without
increasing the bias of the forest. We tested the random
forest classifier with 3,000 random trees and 4-gram
features. The training took 2,362 seconds, and prediction
took 35 seconds. Overall, random forests achieve a
much higher accuracy at 98.89%, and the log loss value is
0.0774 without any tuning or optimization. Because of
its promising performance, we choose random forests as
our base classifier for further optimization.

Tuning/optimization

Feature selection/weighting

We use AV label features to further tune our classifier. As
we discussed in the section “AV label features,” different
AV vendors may assign different AV labels for the same
malware. Due to such inconsistencies across AV labels,
we cannot simply group samples based on AV family
names without normalization.

Given AV labels, we first remove any white spaces and
make them to lowercases, and tokenize AV labels based on
delimiters, suchas ., ,, ,!,-, @ (, ), [, ],:, and /.
For example, the AV label Trojan [Backdoor]/
Win32.Shiz yields the following tokens: trojan,
backdoor, win32, and shiz. Then, we calculate tf-idf
(term frequency-inverse document frequency) for every
token to measure how important a token is to the
9 malware family names. tf-idf is often used to measure
the significance of a term in a document by considering
two statistics: (1) term frequency quantifies the weight of
a term by calculating how many times a term appears in a
document; and (2) inverse document frequency quantifies
the rarity of a term by calculating the logarithm of the
total number of documents divided by the number of
documents where a term appears. For example, token
win32 appears very frequently and tf-idf of win32 in all
9 families are 0. On the other hand, tf-idf of token
tracurc in the Tracur family is 0.47734, because the

X.HUETAL. 6:7

Authorized licensed use limited to: IBM. Downloaded on November 20,2020 at 16:46:15 UTC from IEEE Xplore. Restrictions apply.



token appears only in Tracur family. Note that although
family name Tracur does not exactly match with token
tracurc (i.e., extra “c” at the end), tf-idf captures its
significance in the family. As a result, the family of a
sample can be determined by choosing the family with the
highest tf-idf sum of all tokens. In our experiments, we
calculate tf-idf with both 1-gram and 2-gram tokens.

Combining multiple features

Because different types of features capture different
aspects of malware programs, a single feature type is
likely insufficient to characterize the entire spectrum of
malware samples. For instance, instruction features are
useful in detecting unknown malware programs that are
variations of existing malware family. However, they may
not be very effective in dealing with evasive techniques
like obfuscation or runtime packing. On the other hand,
AV label-based features are very well suited for existing
malware samples that have been analyzed by various AV
companies. However, the classification results are often
unreliable if the malware program belongs to a new family
or is simply a previously unseen variant. In such case,
labels from different AV vendors are often inconsistent or
contradictory. The lack of consensus created a major
challenge for classification algorithms. Exploiting this
complementary nature among different features, we
aggregate multiple features into a composite feature
vector. There are many possible ways to combine multiple
features, and in this study we used a simple approach that
concatenates the original vectors of features into a single
feature vector. The increasing dimensionality makes
feature selection an essential step in order to avoid
overfitting and improve model performance. Fortunately,
random forests directly perform feature selection during
the process of building sub-trees and classification rules
and therefore are well suited for the task. In total, the
combined feature vector consists of 13,547 features, and
training random forest took 2,867 seconds. In addition,
we also performed tuning and optimization on the
classification algorithm, and the results will be presented
in the next section.

Evaluation

In this section, we evaluate the performance of our
malware classification algorithm. We first look at the
effectiveness of reconstructing PE files for malware
programs. This is a critical prerequisite for obtaining
reliable AV label features. Then, we will describe the
experiment results of applying the classification algorithm
on real world malware samples in the test dataset.

Effectiveness of PE reconstruction

While reconstructing headers and files from the hex
dump and IDA outputs, we noticed that some files were
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Table 1 File types. (EXE: executable; DLL:
dynamic link library; LHA: LHarc; RAR: Roshal
archive.)

Types # training # testing
samples samples
EXE, DLL 10,806 10,806
CryptFF 21 23
Malformed file signature 5 5
LHA compressed 9
RAR compressed 13 12
7zip compressed - 2
Outlook message 1 -
Octet stream - 1
Based64 encoded 1 1
Scrambled binary 1 1
Binary without section info 3 -
“Empty” file 8 13
Total 10,868 10,873

non-executable files and required appropriate processing
(see the section “Preprocessing”). A detailed breakdown
of file types identified by our investigation is described

in Table 1. There were several challenges in the process
of file reconstruction. For example, the IDA output

of some files (e.g., collapsed) lacked critical information,
such as section and entry point. In addition, some binary
files were “broken,” and no useful information about
sections and files was available. Some Nullsoft Scriptable
Install System files and compressed files were truncated
such that the actual binary content could not be

extracted. “Empty” files had only “??” characters in their
binary content, and no information about samples was
available. Instead, MD5 checksum of the original file was
given, and we use the MDS5 to obtain AV labels from
VirusTotal.

Performance evaluation

One of the core steps in training machine learning models
is to select appropriate values for hyperparameters. In
contrast to regular parameters in the learning algorithm,
which are optimized and selected automatically during
the training process, hyperparameters are those that need
to be specified by the user. The proper choice of these
hyperparameters is often critical to ensure that the model
does not overfit or underfit the training data. In this study,
we optimized the selection of several hyperparameters in
the random forest using grid search, which exhaustively
searches through a subset of the hyperparameter space to
determine the best combination of parameter values.

The search is guided by the performance metric computed
using the k-fold cross validation on the training datasets.
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Table 2 Evaluation results on different features.

AV label features Instruction features Combined
5-fold CV accuracy on training data 0.994 0.993 0.998
Logloss on test data 0.0695553 0.0546879 0.0258737
Training time (seconds) 1533 728 2867

Table 3 Probability assignments of malware samples to malware families.

Samples Malware family probability (every column represents one family)
Sample 1 0984  0.006 0 0.001 0 0.001 0.002 0.004 0.002
Sample 2 0 1 0 0 0 0 0 0 0
Sample 3 0 0 0 0 0 0 0 1 0
Sample 4 0 0.001 0.001 0.006 0.002 0973 0 0.013 0.004
Sample 5 0.001 0 0.001 0.994 0 0.001 0.001 0.002 0
Sample 6 0 0 0 0.002 0.001 0.002 0 0991 0.004
Sample 7 0.001 0 0 0.003 0 0.002 0 0.007 0.987

Specifically, grid search was used to select the following
three main parameters of the random forest classifiers:

* Number of estimators—number of trees in the forest.
We search the value range between 500 and 10,000.
In general, a higher number of estimators leads to better
accuracy. However, it also poses a time/quality trade-off.

* Maximum number of features—the number of features to
consider when looking for the best split in the tree
building step. Assuming the total number of features in
the feature vector is n, we tested several choices between
1,000 to maximum #n features.

* Split criterion—different methods for measuring the
quality of a split. Two methods were incorporated into
the search are Gini impurity and entropy.

Overall, our experiments showed that the parameter
combination (1,000 estimators, 2,000 features, and “Gini”
split criteria) appeared to strike a good balance between
classification accuracy and the computational overhead,
allowing us to quickly compare the effectiveness of
various features and parameter settings.

We evaluated the classifier performance using both
individual types of features and the combined feature.
Table 2 summarizes the comparative results. Both AV
label and instruction based features perform fairly well
on the training dataset in terms of the 5-fold cross
validation (CV). This indicates that strong correlation
exists within the same malware families, thus allowing the
learning algorithm to select distinguishing features unique
to a particular malware family. Nevertheless, there are
still difficult samples that are misclassified, leading to the
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logloss of 0.069 and 0.054 respectively. Combining the
two feature types offers a more comprehensive picture of
malware characteristics. Therefore, not only does it
improve the accuracy of 5 fold cross-validation on the
training data, but it also dramatically reduces the logloss
by more than 50% (i.e. from more than 0.054 to 0.0258)
for the testing data. This demonstrates that the

combined feature vector generalizes well to the
previously unseen samples.

While investigating the classification results, we have
noticed one potential optimization to improve the logloss
result that is to adjust the probability assignment to
various families. We found that a majority of the correctly
classified samples have their probability distributed across
multiple families. In Table 3, we display typical
probability assignments of several samples.

We can see that the family with probability close to 1 is
almost certain to be the correct family for the malware
sample. In such cases, diverting some probability mass,
even a small one, to other families is not an optimal
strategy, because this will negatively affect the logloss
value. Based on this observation, we devised a new
probability assignment strategy, which would concentrate
all the probability mass to a single family for those
confident classification results. However, the main
challenge is how to determine a good threshold such
that if the probability of a sample belonging to a
particular family is higher than the threshold, we will
assign probability 1 to that family and 0 to others. As
discussed earlier, according to the formula of logloss
computation, the penalty of assigning probability 1 to the
wrong malware family is quite significant. Therefore,
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it is of critical importance that we choose the proper
threshold value.

We use the labeled training dataset to guide the
threshold selection process. Essentially, we vary the
threshold between 0.1 and 1, and calculate the logloss
value for each threshold using the training data. The
correlation between probability threshold and logloss
value is plotted in Figure 4. The experiments were
repeated multiple times with different splits of training
datasets and the median, mean, min, and max value of
logloss are plotted in the figure. We can observe that
the curve reaches the bottom around 0.6 and 0.7. As a
result, we set the threshold to be 0.65 and apply it to
the classification results of the test dataset. This,
in fact, helped us reduce logloss by another 50% and
achieve a value of 0.0121859.

Conclusion

In this paper, we have presented the design,
implementation, and evaluation of a malware classification
system based on multifaceted features such as machine
instruction and AV label features. By exploiting the
complementary nature among these features, the proposed
system can accurately and efficiently classify unknown
malware samples into specific families. The system
extracts an aggregated feature vector from each malware
program based on opcode representation and the
intelligence from antivirus software. It then trains and
optimizes a random forest classifier to learn the unique set
of features that best distinguishes between malware
families. To ensure the scalability and accuracy, we

6:10 X HUETAL.

adopted a combination of a hashing kernel that reduces
the dimensionality of feature vectors and an optimal
probability assignment strategy. Equipped with these
techniques, the system is experimentally shown to be able
to accurately classify more than 10,000 malware samples
with 99.8% accuracy in fivefold cross-validation and a
logloss value of 0.0258.

**Trademark, service mark, or registered trademark of Microsoft
Corporation or Twitter, Inc., in the United States, other countries, or
both.
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